Maize yield response to a phosphorus-solubilizing microbial inoculant in field trials
نویسندگان
چکیده
Findings from multi-year, multi-site field trial experiments measuring maize yield response to inoculation with the phosphorus-solubilizing fungus, Penicillium bilaiae Chalabuda are presented. The main objective was to evaluate representative data on crop response to the inoculant across a broad set of different soil, agronomic management and climate conditions. A statistical analysis of crop yield response and its variability was conducted to guide further implementation of a stratified trial and sampling plan. Field trials, analysed in the present study, were conducted across the major maize producing agricultural cropland of the United States (2005-11) comprising 92 small (with sampling replication) and 369 large (without replication) trials. The multi-plot design enabled both a determination of how sampling area affects the estimation of maize yield and yield variance and an estimation of the ability of inoculation with P. bilaiae to increase maize yield. Inoculation increased maize yield in 66 of the 92 small and 295 of the 369 large field trials (within the small plots, yield increased significantly at the 95% confidence level, by 0·17 ± 0·044 t/ha or 1·8%, while in the larger plots, yield increases were higher and less variable (i.e., 0·33 ± 0·026 t/ha or 3·5%). There was considerable inter-annual variability in maize yield response attributed to inoculation compared to the un-inoculated control, with yield increases varying from 0·7 ± 0·75 up to 3·7 ± 0·73%. No significant correlation between yield response and soil acidity (i.e., pH) was detected, and it appears that pH reduction (through organic acid or proton efflux) was unlikely to be the primary pathway for better phosphorus availability measured as increased yield. Seed treatment and granular or dribble band formulations of the inoculant were found to be equally effective. Inoculation was most effective at increasing maize yield in fields that had low or very low soil phosphorus status for both small and large plots. At higher levels of soil phosphorus, yield in the large plots increased more with inoculation than in the small plots, which could be explained by phosphorus fertilization histories for the different field locations, as well as transient (e.g., rainfall) and topographic effects.
منابع مشابه
Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria
Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted...
متن کاملبرهمکنش قارچ میکوریز آربسکولار و باکتری سودوموناس فلورسنس روی کارایی مصرف کودهای فسفر، وابستگی میکوریزایی و عملکرد ذرت در شرایط تنش کم آبی
In order to evaluate the effect of arbuscular mycorrhizal (AM) fungi and Pseudomonas fluorescens bacteria on phosphorus fertilizer use efficiency, mycorrhizal dependence and grain yield and dry matter yield of maize under water deficit conditions, a field experiment was conducted as split-split plot arrangement based on randomized complete block design with three replications. The treatments in...
متن کاملInvestigating the Effect of Phosphate Solubilizing Microorganisms of Insoluble Phosphorus on Phosphorus Acquisition and Utilization Efficiency in Corn (Zea mays L.)
In order to investigate P acquisition efficiency (PACE) and P utilization efficiency (PUTE) of the corn in the presence of phosphate-solubilizing microorganisms (PSMs), a factorial experiment was carried out in a completely randomized design in the greenhouse. The factors were including P sources (tricalcium phosphate (TCP) and rock phosphate (RP)) and microbial inoculation (control, soluble P ...
متن کاملMore aboveground biomass, phosphorus accumulation and remobilization contributed to high productivity of intercropping wheat
Intercropping often results in increasing production than sole per unit land area, but theunderlying mechanisms are poorly understood. Plants showed different physiologicalcharacteristics in intercropping and sole. However, less information was shown the relationshipsbetween plant aboveground biomass (AB), phosphorus accumulation (PB) and remobilizationand the yield advantage. Here, field exper...
متن کاملMaize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management
Low soil fertility and high weed infestation are the main culprits for the declining maize production inWestern Kenya. Technology packages to address these constraints exist, but their effectiveness is likely to be influenced by variability in soil types and farm management practices in the region. Trials were conducted during the 2008/2009 cropping seasons to investigate the nutrient use e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 153 شماره
صفحات -
تاریخ انتشار 2015